
Transformer & Credibility
Lecture 12

36th International Summer School SAA
University of Lausanne

Ronald Richman, Salvatore Scognamiglio, Mario V. Wüthrich

12 September 2025

1/54

Attention is All You Need

The most important paper in machine learning
history?

Introduced the Transformer architecture
Currently powering AI applications:

GPT5 = Generative Pretraining Transformer
Claude
Gemini
Grok

Some questions:
Can we understand Transformer models in an
actuarial manner?
Can these models be applied for actuarial work?
Can we improve them with actuarial
techniques?

2/54

Roadmap of Talk

Introduce Transformer models

Explain how to read the paper
"Attention is All You Need"

Discuss how to adapt these to
tabular data = actuarial
problems

Discuss credibility and show how
the Transformer can be reworked
as a credibility model

Show how the model can be
interpreted and improved

3/54

Introduction to Transformers

1 Introduction to Transformers

2 Understanding Attention is All You Need

3 Seq2Seq to Tabular Data

4 Credibility

5 Example + Interpretability

6 Improvements

7 Conclusions

4/54

Introduction to Transformers

Transformer

General purpose model for processing data
for machine learning

Data = text, images, sound or tabular data
= data used for actuarial work
Relies on several main components covered
earlier:

Embedding data into vector space
Self-attention operation. . .
. . . and extension to multi-head attention
Feedforward networks
Skip connections
Normalization

We will provide intuitive explanations for all
of these in context of non-life pricing
example

Image from "Attention is all
you need"

4/54

Introduction to Transformers

Modern ML relies on embeddings!

Transformer was a new approach
for deep learning relying on
learning embeddings for NLP and
applying Transformers to these

This approach was proposed in
2017 and relies on attention
mechanisms

Extended to other NLP tasks,
computer vision and more
recently, tabular data

5/54

Introduction to Transformers

Transformers = Compute over Embeddings

Inputs are mapped to embeddings
(tokens, image patches, tabular features)
(Vaswani et al., 2017)

Self-attention performs
content-dependent routing/mixing
between embeddings via learned
Q/K/V projections (Vaswani et al.,
2017)

Feed-forward layers apply non-linear
per-token compute; stacking layers
composes these computations (Geva et
al., 2021)

Positional/feature encodings make the
compute structure-aware (order or field
identity) (Vaswani et al., 2017)

CLS token aggregates information for
prediction = a computed summary over
embeddings (Devlin, Chang, Lee, &
Toutanova, 2019)

6/54

Understanding Attention is All You Need

1 Introduction to Transformers

2 Understanding Attention is All You Need

3 Seq2Seq to Tabular Data

4 Credibility

5 Example + Interpretability

6 Improvements

7 Conclusions

7/54

Understanding Attention is All You Need

Transformer Overview: Attention is All You Need

The Transformer architecture from "Attention is
All You Need" focuses on sequence-to-sequence
modeling,

such as translating an English sentence to
French.

It accomplishes this by using the earlier
implementation of self-attention in Bahdanau,
Cho, and Bengio (2015).
Key concepts include:

Inputs + Embeddings
Encoder
Decoder

Each of these blocks are composed of several
components i.e. this is a compound
architecture!

7/54

Understanding Attention is All You Need

Input and Input Embeddings

Input Embeddings: The model
processes entire sentences as input.
Sentences are tokenized and projected
into high-dimensional vectors.

Example: English input "The cat sat on
the mat" and "The dog ran fast"
tokenized as ["The", "cat", "sat", "on",
"the", "mat"] and ["The", "dog", "ran",
"fast"].

Each token is embedded into a vector
(e.g., dimension d = 512).

For NLP tasks, how you tokenize is
important and can create problems if
not done correctly!

8/54

Understanding Attention is All You Need

Input and Input Embeddings mathematics

The input sequence of tokens is represented as a matrix
X1:t = [X1, . . . , X t]⊤ ∈ Rt×q, where t is the sequence length and q is
the input dimension (e.g., one-hot encoded tokens).

Tokens are embedded in the same way as we embed categorical data
(discussed in Lecture 6), i.e.:

Choose an embedding dimension b ∈ N, this is a hyper-parameter
selected by the modeler, typically b ≪ K .

An entity embedding (EE) is defined by eEE : A → Rb, X 7→ eEE (X).
In total this entity embedding involves b · K embedding weights.

Later, we use the notation E1:t for the matrix of embeddings.

Generally b is much larger than we use for tabular data.
9/54

Understanding Attention is All You Need

Positional Encoding

Positional Encoding: Fixed sinusoidal
vectors are added to input embeddings
to encode token positions, preserving
sequence order.
Formula:

PE(pos,2i) = sin
(pos

100002i/d

)
PE(pos,2i+1) = cos

(pos
100002i/d

)
Example: For both "The cat sat on the
mat" and "The dog ran fast", position 1
("The" in both) gets the same PE;
position 2 ("cat" and "dog") gets the
same PE, and so on, differentiating
positions regardless of tokens.

10/54

Understanding Attention is All You Need

Positional Encoding mathematics

Positional encodings are added to embeddings:
Ẽ1:t = E1:t + P1:t ∈ Rt×d , where P1:t = [p1, . . . , pt]⊤ and each
pu ∈ Rd encodes position u.

The fixed sinusoidal encoding is defined component-wise for position u
and dimension j : pu,j = sin(u/10000j/d) if j even, or
cos(u/10000(j−1)/d) if j odd.

This preserves relative positional information and allows the model to
distinguish sequence order without learnable parameters.

For modern models, we use a more efficient approach called Rotary
Position Embeddings (RoPE) which is discussed in Su, Lu, Pan, Wen,
and Liu (2021).

11/54

Understanding Attention is All You Need

Rotary Position Embeddings (RoPE) 1

Idea: Encode relative positions by rotating query and key vectors by
position-dependent angles, so attention depends on token offsets rather
than absolute indices (Su et al., 2021).

Math: Split d into 2D pairs and apply a rotation to each pair. For pair
index i = 1, . . . , d/2 use frequency ωi = 10000− 2(i−1)

d and define the
block-diagonal rotation R(u) = diag(R2(u ω1), . . . , R2(u ωd/2)) with

R2(ϕ) =
[
cos ϕ − sin ϕ
sin ϕ cos ϕ

]
. Then

q̃u = R(u) qu, k̃v = R(v) kv .

Inner products rotate equivariantly: q̃⊤
u k̃v = q⊤

u R(u−v) kv , so
attention depends on the offset (u−v).

12/54

Understanding Attention is All You Need

Rotary Position Embeddings (RoPE) 2

Intuition: Rotation encodes phase that advances with position. Dot
products compare phases, naturally capturing relative distances;
extrapolates to longer sequences since rotations repeat smoothly
beyond training range.

Benefits: Better length extrapolation and strong empirical
performance with minimal changes to the Transformer.

Adoption: Now standard in modern LLMs (e.g., LLaMA families)
(Touvron, Lavril, Izacard, Martinet, et al., 2023; Touvron, Martin,
Stone, Albert, et al., 2023).

13/54

Understanding Attention is All You Need

Encoder Layer

Input: Takes positional encoded
embeddings (input embeddings +
positional encodings).

Multi-Head Attention: Projects inputs
to Queries (Q), Keys (K), and Values
(V) via linear layers; applies scaled
dot-product attention in parallel heads,
then concatenates and projects.

Residual Connection & Normalization

Feed-Forward Network

Residual & Normalization (Again)

Stacked multiple times (e.g., 6 layers)
for deep contextualization.

14/54

Understanding Attention is All You Need

Self-attention - The Problem

How can we get the matrix of embeddings to “learn” from its own
context?
Examples:

A young driver’s car type embedding should have a different value from
an older driver

A building value embedding should have a different value if it is in a
flood zone or if it isn’t

Allow the embeddings to pay attention to their “surroundings”. . .

. . . looks for matches between queries and keys across different
covariates

15/54

Understanding Attention is All You Need

Self-attention Diagram

16/54

Understanding Attention is All You Need

Intuitions for self-attention in NLP

When building models, relationships between covariates and outcomes
may depend on context.

Famous example in non-life insurance – young drivers and male drivers
often have increased frequency, but young male drivers may experience
even higher frequency => context allow for via interaction effect

Automated method for building context into models: self-attention i.e.
apply attention over inputs; sequence example (Cheng, Dong, &
Lapata, 2016)

17/54

Understanding Attention is All You Need

Encoder Layer mathematics

Input: Positional embeddings Ẽ1:t ∈ Rt×d .

Multi-head attention:
For each head j , compute H j = softmax(QjK⊤

j /
√

d)V j

Then concatenate and project: HMH = Concat(H1, . . . , Hnh)W ∈ Rt×d ,
where Qj , K j , V j are linear projections of Ẽ1:t .

Residual: Add input Ẽ1:t + HMH, followed by layer normalization
znorm(·).

Feed-forward: Time-distributed FNN zt-FNN(·) ∈ Rt×d , residual, and
normalization.

Stacked L times for hierarchical representations.

18/54

Understanding Attention is All You Need

Intuitions for MHA

Transformers usually apply multiple
attention operations

Each operation is called an “attention
head”

This allows the model to learn different
attention operations and value matrices

Outputs combined at the end before
moving further into the model

Can also stack Transformer layers
together to produce a deep model

Both of these improve model capacity
and performance

19/54

Understanding Attention is All You Need

Layer Normalization = Default for Transformers

What: Normalize each token’s hidden features to zero mean and unit
variance, then apply learned scale γ and shift β (Ba, Kiros, & Hinton,
2016).

Formula:

LN(h) = γ ⊙ h − µ√
σ2 + ϵ

+ β, µ = 1
d

d∑
j=1

hj , σ2 = 1
d

d∑
j=1

(hj − µ)2

where statistics are computed per token across features (dimension d).

Why (for Transformers):
Stabilizes deep training with residual connections and attention

Works with small/variable batch sizes and sequence lengths

Same behavior at train and inference (no running averages)
20/54

Understanding Attention is All You Need

LayerNorm vs BatchNorm

How it differs (see also Wu and He (2018) and image below):
LN: per-token, across features; independent of batch size; identical at
train/inference

BN: across the batch (and often spatial/time dims); needs large, stable
batches; uses running means/vars at inference; brittle for autoregressive
decoding (Ioffe & Szegedy, 2015)

BN is preferred in CNNs where large batches and shared spatial stats
are natural

21/54

Understanding Attention is All You Need

Decoder Input - Output Shifted Right - 1

Decoder Input: During training, the
decoder takes the target sequence
shifted right (teacher forcing); during
inference, it uses previously generated
tokens autoregressively.

Example: For French target "Le chat
s’est assis sur le tapis" (from "The cat
sat on the mat"), shifted right as
["<BOS>", "Le", "chat", "s’est",
"assis", "sur", "le"].
Right shift: prepend "<BOS>" and
drop the last token so inputs are
["<BOS>", Y 1, . . . , Y s−1] and targets
are [Y 1, . . . , Y s].
Alignment & no peeking: at position t,
input is Y t−1 (BOS for t=1) and the
label is Y t ; a causal mask prevents
attending to future tokens.

Mathematics: Target sequence
Y 1:s = [Y 1, . . . , Y s]⊤ ∈ Rs×q is shifted
to Y 0:s−1 = [BOS, Y 1, . . . , Y s−1]⊤ ∈
Rs×q; embed to F 0:s−1 ∈ Rs×d and add
positions F̃ 0:s−1 = F 0:s−1 + P0:s−1.
Objective: maximize∑s

t=1 log p(Y t | Y 0:t−1).

22/54

Understanding Attention is All You Need

Decoder Input - Output Shifted Right - 2

Mathematics: Target sequence Y 1:s = [Y 1, . . . , Y s]⊤ ∈ Rs×q is
shifted to Y 0:s−1 = [BOS, Y 1, . . . , Y s−1]⊤ ∈ Rs×q; embed to
F 0:s−1 ∈ Rs×d and add positions F̃ 0:s−1 = F 0:s−1 + P0:s−1.
Objective: maximize

∑s
t=1 log p(Y t | Y 0:t−1).

23/54

Understanding Attention is All You Need

Decoder Layer: Masked Self-Attention

Input: Takes positionally encoded decoder
embeddings F̃ 0:s−1 = F 0:s−1 + P0:s−1.
Masked Multi-Head Attention:
Self-attention with causal mask; project to
Q, K , V from decoder input and apply
scaled dot-product attention.

Example: For shifted "Le chat s’est assis
sur le tapis", mask ensures "Le" attends
only to "<BOS>", "chat" to "<BOS>"
and "Le", etc.

Mathematics: With F̃ 0:s−1 ∈ Rs×d ,
compute A′ = QK⊤/

√
d + M where M is

lower-triangular with −∞ above diagonal;
A = softmax(A′), output H = AV .
Residual F̃ 0:s−1 + H, then layer norm
zLN(·).

24/54

Understanding Attention is All You Need

Decoder Layer: Masking in Masked Multi-Head Attention -
1

Masking Mechanism: Enforces causality in
decoder self-attention; prevents attending to
future positions.

After computing A′ = QK⊤/
√

d , add
mask M: mu,v = 0 for v ≤ u, and
mu,v = −∞ otherwise.
Apply softmax row-wise to A′ + M; masked
positions receive (near) zero weight.
Shape: M ∈ Rs×s lower triangular
(including diagonal).

Example: For shifted input ["<BOS>",
"Le", "chat", "s’est", "assis", "sur", "le"]
(from "The cat sat on the mat" translation),
position 3 ("s’est") attends only to positions
1-3; positions 4-7 are masked (red in image).

25/54

Understanding Attention is All You Need

Decoder Layer: Masking in Masked Multi-Head Attention -
2

Masking: For attention matrix A′ = QK⊤/
√

d ∈ Rs×s , add mask
M ∈ Rs×s where mu,v = 0 if v ≤ u, else mu,v = −∞.

Softmax: au,v = exp(a′
u,v + mu,v)/

∑s
k=1 exp(a′

u,k + mu,k) ∈ (0, 1),
ensuring row sums to 1 and no future attention.

Output: H = AV ∈ Rs×d .

Residual Connection & Layer Normalization (LN)

26/54

Understanding Attention is All You Need

Decoder Layer: Cross-Attention and FFN - 1

Cross Multi-Head Attention: Projects
decoder output to Q; uses Keys (K) and
Values (V) from encoder’s
high-dimensional representations;
enables conditioning on source.

Example: Decoder Q from "Le chat..."
attends to encoder K/V from "The cat
sat on the mat" for translation
alignment.

Residual Connection & Normalization

Feed-Forward Network

Residual & Normalization (Again)

Stacked multiple times (e.g., 6 layers)
for autoregressive generation.

27/54

Understanding Attention is All You Need

Decoder Layer: Cross-Attention and FFN - 2

Cross-attention: Q from decoder state, K , V from encoder output
O1:t ∈ Rt×d ; compute H = softmax(QK⊤/

√
d)V ∈ Rs×d .

Residual and normalization: Add previous state and apply znorm(·).

Feed-forward: Time-distributed FNN zs-FNN(·) ∈ Rs×d , residual, and
normalization.

Stacked L times.

28/54

Understanding Attention is All You Need

Final Prediction and Loss Calculation - 1

Decoder Output: After stacked decoder layers, obtain contextualized
vectors (dimension d) for each position in the sequence.

Linear Projection: Apply a linear layer to project these vectors to the
vocabulary size, producing logits for each token position.

Softmax: Convert logits to probability distributions over the
vocabulary for each position.

Prediction and Comparison: During training, predictions are
compared to the target sequence (original, not shifted) using
cross-entropy loss; argmax or sampling for generation.

Example: For shifted input ["<BOS>", "Le", "chat", "s’est", "assis",
"sur", "le"], model predicts logits/softmax for next tokens: after
"<BOS>" predict "Le", after "Le" predict "chat", etc.; compared
against target ["Le", "chat", "s’est", "assis", "sur", "le", "tapis"].

29/54

Understanding Attention is All You Need

Final Prediction and Loss Calculation - 2

Decoder output: Contextualized matrix G0:s−1 ∈ Rs×d .

Linear projection: Time-distributed layer
L1:s = zs-FNN(G0:s−1) ∈ Rs×v , where v is vocabulary size, producing
logits.

Softmax: Probabilities Pu,j := exp(lu,j)/
∑v

k=1 exp(lu,k) for position u
and token j .

Loss: Cross-entropy between predictions and true targets Y 1:s , e.g.,
−

∑s
u=1

∑v
j=1 yu,j log pu,j .

30/54

Seq2Seq to Tabular Data

1 Introduction to Transformers

2 Understanding Attention is All You Need

3 Seq2Seq to Tabular Data

4 Credibility

5 Example + Interpretability

6 Improvements

7 Conclusions

31/54

Seq2Seq to Tabular Data

From Sequence-to-Sequence to Tabular Transformers - 1

The Transformer in Attention Is All You Need applies self-attention to
sequential text data.

This enables dynamic interactions between positions, allowing the
model to focus on relevant parts of the sequence adaptively.

Can we extend this architecture to tabular data, treating features as
"sequences"?

Key adaptations from Attention Is All You Need include:
Positional encoding

Independent processing of input "sequences"

Encoder Structure and Multihead Attention

31/54

Seq2Seq to Tabular Data

From Sequence-to-Sequence to Tabular Transformers - 2

In sequence models, input is a tensor X1:t ∈ Rt×q, where t is sequence
length and q is input dimension; self-attention computes interactions
via Q, K , V projections.

For tabular data with f features, treat as "sequence" X1:f ∈ Rf ×q,
enabling attention over features instead of time steps.

Adaptations preserve core mappings: Attention head
H(Q, K , V) = softmax(QK⊤/

√q)V ∈ Rf ×q, but now capturing
feature interactions.

32/54

Seq2Seq to Tabular Data

Key References: Tabular Transformers

TabTransformer for contextual embeddings of categorical features
Huang, Khetan, Cvitkovic, and Karnin (2020).

FT-Transformer (feature tokenization + Transformer) Gorishniy,
Rubachev, Khrulkov, and Babenko (2021).

TabNet: attentive, interpretable tabular learning Arik and Pfister
(2021).

AutoInt: self-attentive feature interaction learning Song et al. (2019).

TransTab: transfer across heterogeneous tables Wang and Sun (2022).

33/54

Seq2Seq to Tabular Data

Self attention and ordering

Tabular embeddings have no natural
ordering. . .
. . . so we cannot apply the sinusoidal
positional encodings to the embeddings
Solution: add an extra set of positional
embeddings (encodings) which indicate
from which column of the tabular data the
embedding arises from
Done here by simply learning a new
embedding for each column

34/54

Seq2Seq to Tabular Data

From Positional to Feature Encoding mathematics

In sequences, positional encodings P1:t = [p1, . . . , pt]⊤ ∈ Rt×d are
added to embeddings E1:t , with fixed sinusoidal pu,j = sin(u/10000j/d)
or cosine.

For tabular data with f features, use learnable feature encodings
P1:f ∈ Rf ×d , added to feature embeddings E1:f , yielding
Ẽ1:f = E1:f + P1:f .

Each pu is trained, encoding feature identity (e.g., ’age’ gets fixed pu
across batch), enabling attention to distinguish features without
inherent order.

35/54

Seq2Seq to Tabular Data

A special type of embedding – the CLS token

Output of self-attention is a matrix of contextualized embeddings
This could be used directly for prediction BUT this might (often!)
overfit the data due to the flexibility allowed through the Transformer
model
Can we condense the information into a new vector we can use to
make predictions?
This idea is from the BERT paper (Devlin et al., 2019), which adds a
CLS token to the embeddings
This gets updated with information from all the other embeddings, but
has a much lower dimension => Will make more robust out of sample
predictions
Usually initialized at random values

36/54

Seq2Seq to Tabular Data

CLS Token mathematics

CLS token: Learnable vector c ∈ Rd , concatenated to feature
embeddings Ẽ1:f ∈ Rf ×d , yielding augmented input
Ẽ0:f = [c, Ẽ1, . . . , Ẽ f]⊤ ∈ R(f +1)×d .

After Transformer layers, extract processed CLS h0 ∈ Rd from output
H0:f ∈ R(f +1)×d .

Prediction: Feed-forward zFNN(h0) ∈ Rp, where p is output dimension
(e.g., scalar for regression).

37/54

Seq2Seq to Tabular Data

Encoder Structure for Tabular Data

The encoder layer from the
sequence-to-sequence Transformer is
sufficient for handling tabular data.

For tabular tasks, a much simpler "decoder"
suffices compared to seq2seq models.

It extracts the CLS token (or vector) from
the final Transformer (encoder) layer and
passes it through a feed-forward neural
network to generate predictions.

38/54

Seq2Seq to Tabular Data

Encoder Structure for Tabular Data mathematics

Input: Augmented embeddings Ẽ0:f ∈ R(f +1)×d (including CLS).

Multi-head attention: Compute
HMH = Concat(H1, . . . , Hnh)W ∈ R(f +1)×d , with each
H j = softmax(QjK⊤

j /
√

d)V j ; add residual and normalize
znorm(Ẽ0:f + HMH).

Feed-forward: Time-distributed z(f +1)-FNN(·) ∈ R(f +1)×d , residual,
and normalization; stack L layers.

Output: Extract CLS for final FNN prediction.

39/54

Seq2Seq to Tabular Data

Self-Attention for Tabular Data mathematics

From augmented input Ẽ0:f ∈ R(f +1)×d , project to
Q, K , V ∈ R(f +1)×d via time-distributed FNNs:
Q = z(f +1)-FNNQ (Ẽ0:f), similarly for K , V .

Attention: A = softmax(QK⊤/
√

d) ∈ R(f +1)×(f +1), with elements
au,s = exp(q⊤

u ks/
√

d)/
∑

k exp(q⊤
u kk/

√
d) ∈ (0, 1).

Output: H = AV ∈ R(f +1)×d , where each row is a weighted average
of values, capturing feature (and CLS) interactions.

40/54

Credibility

1 Introduction to Transformers

2 Understanding Attention is All You Need

3 Seq2Seq to Tabular Data

4 Credibility

5 Example + Interpretability

6 Improvements

7 Conclusions

41/54

Credibility

Credibility

Credibility = classical approach to weighting
between:

Overall population experience
Experience of particular policyholder

Celebrated Bühlmann credibility model
provides a distribution free best linear
approximation to this pricing problem!
Credibility also means more generally the
amount of weight we give to a particular
piece of data

41/54

Credibility

Inducing Credibility into the Transformer

Main idea is combine the prior CLS parameters
and the data guided information into a credibility
formula for optimally training the model.
CLS token is usually randomly initialized =>
Transformer can learn whatever value makes the model
fit the data closely
Can we calibrate the CLS token to produce the portfolio
mean = play the role of prior information?
Create two paths in the Transformer model:

Path 1 – predict using the CLS token directly =
portfolio mean
Path 2 – predict using the CLS token after updates
with covariate information
Choose between Path 1 and Path 2 using a random
factor

We want the model to learn good covariate information,
so choose path 2 more often42/54

Credibility

Self attention then becomes a credibility formula!

We have now calibrated the CLS token
to be the portfolio mean
In the attention mechanism, we will give
a probability weight P to this value of
the CLS token. . .
. . . and a weight of (1-P) to the
embedded covariate information
=> self-attention now performs a
credibility operation between the prior
information and covariates!
Instead of using the usual Bühlmann
formula, we rely on the self-attention
mechanism to weight appropriately
between:

Prior information = portfolio average
Covariate information = from
embeddings

43/54

Credibility

Summary of changes w.r.t Vanilla Transformer

Added a CLS token that we will use for prediction

Credibility during training: When training the model, use a
credibility principle:

Select the CLS token with probability α

Select the transformed CLS token with probability (1-α)

Use whichever CLS token is selected to make predictions

Latent credibility: this recalibrates the model such that self attention
becomes a credibility formula

44/54

Example + Interpretability

1 Introduction to Transformers

2 Understanding Attention is All You Need

3 Seq2Seq to Tabular Data

4 Credibility

5 Example + Interpretability

6 Improvements

7 Conclusions

45/54

Example + Interpretability

French MTPL data - Detail

45/54

Example + Interpretability

Models

French MTPL data has 5 continuous and 4
categorical covariates
All 9 covariates embedded using approach
described above
Predicting claims counts, so used Poisson loss
Used credibility probability = 90% during
training
How complex and big does a Transformer
need to be?
Here, we use a total of 1 746 parameters and
1 073 of these are in the Transformer model
=> can build small versions of these
models
Results improve on GLM/FNN/other attempt
to build a Transformer model in Brauer (2024)

46/54

Example + Interpretability

Interpreting the model

Rich information available directly from the Credibility Transformer on
how decisions have been made

How much attention been given to the various covariates and extent to
which we focus on prior information

Scores align to what we would expect on personal lines

47/54

Example + Interpretability

Attention depends on the covariate values

The attention coefficients are
strongly related to the values
the covariate takes. . .
. . . i.e. the model
automatically assigns extra
weight to variables depending
on the information they
convey
Attention also varies by value
of other covariates

48/54

Example + Interpretability

Prior weights also depend on the covariates

Strong relationship between
the covariate values and the
CLS attention scores

I.e. for how the credibility
given to the portfolio
experience varies with the
values of the other covariates
Highest credibility is given to
the portfolio experience
when:

BonusMalus scores are low
DrivAge is middle-aged
VehBrand is not B12
In several of the Regions
in the dataset

49/54

Improvements

1 Introduction to Transformers

2 Understanding Attention is All You Need

3 Seq2Seq to Tabular Data

4 Credibility

5 Example + Interpretability

6 Improvements

7 Conclusions

50/54

Improvements

Attention all the way down

Traditional neural networks treat all inputs
as equally important
In reality, some features matter more than
others
We need yet ANOTHER way to selectively
focus on what’s important
Gated Linear Units (GLU)

Acts like a smart filter for network
calculations
Can learn which inputs are important and
which aren’t
Automatically down-weights or removes
less relevant information

Uses two parallel networks:
One processes the data normally
Another decides how important each piece
is (creates weights between 0 and 1)
Multiplies these together to get final output50/54

Improvements

The Challenge with Continuous Variables

Need smarter way to handle continuous
numbers like age or income
Want to preserve the natural ordering of
numbers
Need to capture both local and global
patterns in the data
Piecewise Linear Encoding (PLE) of
Gorishny et al.

Divides the range of values into "bins"
(like sorting items into boxes)
If value greater than bin boundary =>
set all values to 1
Each value knows which bin it belongs
to AND where it sits within that bin
Like having both a postal code (bin)
and street address (position in bin)
Creates a smarter version of one-hot
encoding for continuous values51/54

Improvements

Results

Performance of the Credibility Transformer significantly enhanced by
making these changes

Despite using a “state of the art” setup, credibility still improves over
the vanilla Transformer results (α = 100%)!

52/54

Conclusions

1 Introduction to Transformers

2 Understanding Attention is All You Need

3 Seq2Seq to Tabular Data

4 Credibility

5 Example + Interpretability

6 Improvements

7 Conclusions

53/54

Conclusions

Summary

Introduced the Transformer architecture. . .

. . . which we enhanced with dual credibility mechanisms:
Explicit mechanism through probabilistic CLS token selection during
training (α parameter)

Implicit mechanism through attention weights functioning as learned
credibility formula

Demonstrated integration of modern deep learning components:
Multi-head attention

Deep architecture with multiple Transformer layers

Gated Linear Units (GLU) for feature importance

Differentiable Piecewise Linear Encoding (PLE) for continuous covariates

53/54

Conclusions

Conclusions

What lessons can we draw from this work?

Even in a state of the art deep learning model, applying classical
actuarial principles can lead to gains in model performance

Actuarial science and modern machine learning aren’t separate
disciplines. . .

... but rather, classical actuarial principles like credibility still have deep
relevance in the age of deep learning.

54/54

Conclusions

References I

Arik, S. Ö., & Pfister, T. (2021). Tabnet: Attentive interpretable tabular
learning. In Proceedings of the aaai conference on artificial
intelligence. Retrieved from https://arxiv.org/abs/1908.07442

Ba, J. L., Kiros, J. R., & Hinton, G. E. (2016). Layer normalization. arXiv
preprint arXiv:1607.06450. Retrieved from
https://arxiv.org/abs/1607.06450

Bahdanau, D., Cho, K., & Bengio, Y. (2015). Neural machine translation
by jointly learning to align and translate. In Proceedings of the
international conference on learning representations (iclr). Retrieved
from https://arxiv.org/abs/1409.0473 (arXiv:1409.0473)

Devlin, J., Chang, M., Lee, K., & Toutanova, K. (2019). Bert: Pre-training
of deep bidirectional transformers for language understanding. In
Proceedings of naacl-hlt. Retrieved from
https://arxiv.org/abs/1810.04805

54/54

https://arxiv.org/abs/1908.07442
https://arxiv.org/abs/1607.06450
https://arxiv.org/abs/1409.0473
https://arxiv.org/abs/1810.04805

Conclusions

References II
Geva, M., et al. (2021). Transformer feed-forward layers are key-value

memories. arXiv preprint arXiv:2110.02834. Retrieved from
https://arxiv.org/abs/2110.02834

Gorishniy, Y., Rubachev, I., Khrulkov, V., & Babenko, A. (2021). Revisiting
deep learning models for tabular data. arXiv preprint
arXiv:2106.11959. Retrieved from https://arxiv.org/abs/2106.11959

Huang, X., Khetan, A., Cvitkovic, M., & Karnin, Z. (2020). Tabtransformer:
Tabular data modeling using contextual embeddings. arXiv preprint
arXiv:2012.06678. Retrieved from https://arxiv.org/abs/2012.06678

Ioffe, S., & Szegedy, C. (2015). Batch normalization: Accelerating deep
network training by reducing internal covariate shift. In Proceedings
of the 32nd international conference on machine learning. Retrieved
from https://arxiv.org/abs/1502.03167

54/54

https://arxiv.org/abs/2110.02834
https://arxiv.org/abs/2106.11959
https://arxiv.org/abs/2012.06678
https://arxiv.org/abs/1502.03167

Conclusions

References III
Song, W., et al. (2019). Autoint: Automatic feature interaction learning via

self-attentive neural networks. In Proceedings of the 28th acm
international conference on information and knowledge management.
Retrieved from https://arxiv.org/abs/1810.11921 doi:
10.1145/3357384.3357925

Su, J., Lu, Y., Pan, S., Wen, B., & Liu, Y. (2021). Roformer: Enhanced
transformer with rotary position embedding. arXiv preprint
arXiv:2104.09864. Retrieved from https://arxiv.org/abs/2104.09864

Touvron, H., Lavril, T., Izacard, G., Martinet, X., et al. (2023). Llama:
Open and efficient foundation language models. arXiv preprint
arXiv:2302.13971. Retrieved from https://arxiv.org/abs/2302.13971

Touvron, H., Martin, L., Stone, K., Albert, P., et al. (2023). Llama 2:
Open foundation and fine-tuned chat models. arXiv preprint
arXiv:2307.09288. Retrieved from https://arxiv.org/abs/2307.09288

54/54

https://arxiv.org/abs/1810.11921
https://arxiv.org/abs/2104.09864
https://arxiv.org/abs/2302.13971
https://arxiv.org/abs/2307.09288

Conclusions

References IV
Vaswani, A., Shazeer, N., Parmar, N., Uszkoreit, J., Jones, L., Gomez,

A. N., . . . Polosukhin, I. (2017). Attention is all you need. In
Advances in neural information processing systems. Retrieved from
https://arxiv.org/abs/1706.03762

Wang, Z., & Sun, J. (2022). Transtab: Learning transferable tabular
transformers across tables. arXiv preprint arXiv:2205.09328. Retrieved
from https://arxiv.org/abs/2205.09328

Wu, Y., & He, K. (2018). Group normalization. In Proceedings of the
european conference on computer vision (eccv). Retrieved from
https://arxiv.org/abs/1803.08494

54/54

https://arxiv.org/abs/1706.03762
https://arxiv.org/abs/2205.09328
https://arxiv.org/abs/1803.08494

	Introduction to Transformers
	Understanding Attention is All You Need
	Seq2Seq to Tabular Data
	Credibility
	Example + Interpretability
	Improvements
	Conclusions
	References

